Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658952

RESUMO

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Assuntos
Autofagia , Neoplasias Colorretais , Reposicionamento de Medicamentos , Ivermectina , Nanopartículas , Autofagia/efeitos dos fármacos , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Humanos , Camundongos , Nanopartículas/química , Ivermectina/farmacologia , Ivermectina/química , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Fototerapia/métodos , Ácido Hialurônico/química , Hidroxicloroquina/farmacologia , Hidroxicloroquina/química , Terapia Fototérmica/métodos
2.
Int J Biol Macromol ; 266(Pt 1): 130912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513896

RESUMO

Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.


Assuntos
Proliferação de Células , Hidroxicloroquina , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Hidroxicloroquina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia
3.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256019

RESUMO

Chloroquine (CQ) and its derivate hydroxychloroquine (HCQ), the compounds with recognized ability to suppress autophagy, have been tested in experimental works and in clinical trials as adjuvant therapy for the treatment of tumors of different origin to increase the efficacy of cytotoxic agents. Such a strategy can be effective in overcoming the resistance of cancer cells to standard chemotherapy or anti-angiogenic therapy. This review presents the results of the combined application of CQ/HCQ with conventional chemotherapy drugs (doxorubicin, paclitaxel, platinum-based compounds, gemcitabine, tyrosine kinases and PI3K/Akt/mTOR inhibitors, and other agents) for the treatment of different malignancies obtained in experiments on cultured cancer cells, animal xenografts models, and in a few clinical trials. The effects of such an approach on the viability of cancer cells or tumor growth, as well as autophagy-dependent and -independent molecular mechanisms underlying cellular responses of cancer cells to CQ/HCQ, are summarized. Although the majority of experimental in vitro and in vivo studies have shown that CQ/HCQ can effectively sensitize cancer cells to cytotoxic agents and increase the potential of chemotherapy, the results of clinical trials are often inconsistent. Nevertheless, the pharmacological suppression of autophagy remains a promising tool for increasing the efficacy of standard chemotherapy, and the development of more specific inhibitors is required.


Assuntos
Cloroquina , Neoplasias , Animais , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Fosfatidilinositol 3-Quinases , Terapias em Estudo , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Antineoplásicos Alquilantes , Citotoxinas , Neoplasias/tratamento farmacológico
4.
Reprod Sci ; 31(3): 779-790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845590

RESUMO

Fetal growth restriction (FGR) seriously threatens perinatal health. The main cause of FGR is placental malperfusion, but the specific mechanism is still unclear, and there is no effective treatment for FGR. We constructed a FGR mouse model by adding exogenous asymmetric dimethylarginine (ADMA) through in vivo experiments and found that ADMA could cause placental dysplasia and induce the occurrence of FGR. Compared with the control group, reactive oxygen species (ROS) production in the placenta was increased in mice with FGR, and the expression of autophagy-related proteins p-AKT/AKT, p-mTOR/mTOR, and P62 was significantly decreased, while the expression of Beclin-1 and LC3-II was significantly increased in the FGR group. Furthermore, ADMA had a favorable effect in promoting the formation of autophagosomes. Hydroxychloroquine (HCQ) and N-acetylcysteine (NAC) improved ADMA-induced disorders of placental development and alleviated ADMA-induced FGR. This study found that ADMA could cause excessive autophagy of trophoblasts by increasing the level of oxidative stress, ultimately leading to the occurrence of FGR, and HCQ and NAC had therapeutic effects on ADMA-induced FGR.


Assuntos
Acetilcisteína , Arginina/análogos & derivados , Placenta , Humanos , Gravidez , Camundongos , Feminino , Animais , Placenta/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Acetilcisteína/metabolismo , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/metabolismo , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Hidroxicloroquina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Autofagia
5.
Eur J Drug Metab Pharmacokinet ; 49(1): 101-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114885

RESUMO

BACKGROUND AND OBJECTIVE: Although polypharmacy is a particular challenge in daily rheumatological practice, clinical research on the effects of hydroxychloroquine (HCQ), a commonly used drug for patients with rheumatic diseases, is sparse on cytochrome P450 (CYP)-mediated metabolism. We have shown that pre-treatment with pantoprazole does not alter HCQ absorption in healthy volunteers. In this paper, we report the effects of a single 400 mg dose of HCQ on specific CYP3A and CYP2D6 substrates in healthy volunteers. METHODS: In the trial, participants were randomized into two groups (HCQ plus a 9-day course of pantoprazole, or HCQ only). As a secondary endpoint, the effects of a single oral dose of HCQ on the exposure of the oral microdosed CYP3A probe drug midazolam (30 µg) and the oral microdosed CYP2D6 probe drug yohimbine (50 µg) were studied in 23 healthy volunteers (EudraCT no. 2020-001470-30, registered 31 March 2020). RESULTS: The exposure of the probe drugs after intake of HCQ compared with baseline values was quantified by the partial area under the plasma concentration-time curve 0-6 h after administration (AUC0-6 h) for yohimbine and the partial AUC2-4 h for midazolam. Under HCQ, yohimbine AUC0-6 h was unchanged, independent of CYP2D6 genotypes and pantoprazole exposure. Midazolam AUC2-4 h was 25% higher on the day of HCQ administration than at baseline (p = 0.0007). This significant increase was driven by the pantoprazole subgroup, which showed a 46% elevation of midazolam AUC2-4 h as compared with baseline (p < 0.0001). The ratio of midazolam to 1-OH-midazolam partial AUC2-4 h significantly increased from 3.03 ± 1.59 (baseline) to 3.60 ± 1.56 (HCQ) in the pantoprazole group (p = 0.0026). CONCLUSION: In conclusion, we observed an increased midazolam exposure most likely related to pantoprazole.


Assuntos
Citocromo P-450 CYP3A , Hidroxicloroquina , Humanos , Área Sob a Curva , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Voluntários Saudáveis , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Midazolam , Pantoprazol/farmacologia , Preparações Farmacêuticas , Ioimbina
6.
Jt Dis Relat Surg ; 35(1): 146-155, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108176

RESUMO

OBJECTIVES: The purpose of this study was to investigate whether hydroxychloroquine (HCQ) sulfate causes oxidative stress (OS) and its effect on fracture healing in an experimental rat model. MATERIALS AND METHODS: In this experimental study, open diaphyseal femur fractures were induced in 24 eight-week-old male rats (mean weight: 225±25 g; range, 200 to 250 g) and then fixed with K-wire. The rats were divided into four groups: HCQ-2, control-2 (C-2), HCQ-4, and control-4 (C-4). During the study period, rats in the HCQ groups received an HCQ solution (160 mg/kg/day), whereas rats in the control groups received saline. The HCQ-2 and C-2 groups were sacrificed on the 14th day, and the HCQ-4 and C-4 groups were sacrificed on the 28th day. After sacrifice, malondialdehyde levels induced by OS were calculated for each rat, and fracture healing was evaluated radiographically, histomorphometrically, histopathologically, and immunohistochemically. RESULTS: Malondialdehyde levels were higher in the HCQ groups than in the control groups (p<0.05). Hydroxychloroquine caused OS in rats. The ratio of total callus diameter to femur bone diameter was lower in HCQ groups compared to control groups (p<0.05). No differences were observed when comparing radiological and histological healing results between the control and HCQ groups. Alkaline phosphatase levels were lower in the HCQ-4 group than the C-4 group at week four (p<0.05), although osteocalcin and osteopontin levels did not differ between groups (p>0.05). Oxidative stress had no adverse effects on histologic healing outcomes and osteoblast functions. Cathepsin K and tartrate-resistant acid phosphatase-5b levels were higher in the HCQ-4 group than in the C-4 group (p<0.05). While the number and function of osteoclasts increased due to OS in callus tissue, a decrease in the number of chondrocytes was observed. CONCLUSION: Hydroxychloroquine-induced OS increases the number and function of osteoclasts and decreases the number of hypertrophic chondrocytes and endochondral ossification but has no significant effect on mid-late osteoblast products and histological fracture healing scores.


Assuntos
Fraturas do Fêmur , Consolidação da Fratura , Ratos , Masculino , Animais , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Calo Ósseo , Osteogênese , Fraturas do Fêmur/induzido quimicamente , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/tratamento farmacológico , Malondialdeído/farmacologia
7.
Anticancer Res ; 43(12): 5425-5436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030206

RESUMO

BACKGROUND/AIM: Cholangiocarcinoma is a lethal cancer, and current chemotherapeutic drugs are not very effective. Recent studies reported that cholangiocarcinoma cells were sensitive to adenosine. One adenosine analog, 8-chloroadenosine (8-CA), was shown to be more potent than adenosine and induced apoptosis in leukemia cells. This study examined effects of 8-CA in cholangiocarcinoma cells and immortalized cholangiocytes. MATERIALS AND METHODS: Cell growth was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell invasion was examined by transwell assay. Cell cycle and cell death were evaluated by flow cytometry. Colorimetric absorbance assay was used to assessed RNA and protein synthesis as well as mitochondrial membrane potential. Protein levels were examined by western blot analysis. Animal experiment was performed in Balb/cAJcl-Nu mice. RESULTS: 8-CA reduced cholangiocarcinoma cell growth, prevented colony formation and caused endoplasmic reticulum stress and cell-cycle arrest. Eventually, apoptosis was induced. However, treatment with 8-CA did not interfere with RNA synthesis or protein synthesis and did not alter mitochondrial membrane potential. Combination of 8-CA with several chemotherapeutic drugs in vitro was less effective than 8-CA alone and the drugs alone, except for the combination of 8-CA with hydroxychloroquine, which had an additive effect on RMCCA-1 cells. However, further in vivo study showed that treatment with 8-CA alone inhibited tumor growth more than treatment with a combination of 8-CA with hydroxychloroquine. CONCLUSION: 8-Chloroadenosine inhibited CCA cells by inducing endoplasmic reticulum stress and apoptosis. In vivo study showed that 8-CA inhibited cholangiocarcinoma tumor growth better when administered alone as compared to a combination with hydroxychloroquine.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Hidroxicloroquina/farmacologia , Linhagem Celular Tumoral , Apoptose , Colangiocarcinoma/patologia , Proliferação de Células , Estresse do Retículo Endoplasmático , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Adenosina/farmacologia , RNA
8.
Chem Biol Interact ; 386: 110750, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839513

RESUMO

Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.


Assuntos
Hidroxicloroquina , Neoplasias , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia , Microambiente Tumoral
9.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762406

RESUMO

The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57 ± 1.72 µg/mL) compared to HCQ (102.21 ± 0.67 µg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.


Assuntos
Quitosana , Neoplasias Pulmonares , Nanopartículas , Humanos , Simulação de Acoplamento Molecular , Quitosana/química , Hidroxicloroquina/farmacologia , Liberação Controlada de Fármacos , Antibacterianos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Nanopartículas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
10.
Jt Dis Relat Surg ; 34(3): 628-639, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37750268

RESUMO

OBJECTIVES: This study aims to evaluate the time- and dose-dependent effects of oral hydroxychloroquine (HCQ) on focal full-thickness knee chondral defect healing in a rabbit model. MATERIALS AND METHODS: Cartilage defects of 4x4 mm2 were created on both medial femoral condyles of 24 New Zealand rabbits. The rabbits were divided into six groups (A-F) according to HCQ administration and sacrifice time: A (three-week control) and B (six-week control) received no additional interventions; C (20 mg/kg HCQ, three weeks); D (20 mg/kg HCQ, six weeks); E (40 mg/kg HCQ, three weeks); and F (40 mg/kg HCQ, six weeks). Osteochondral specimens were evaluated macroscopically, histologically, and immunohistochemically. The terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick end labeling (TUNEL) method was used to detect apoptotic cells. RESULTS: The International Cartilage Repair Society (ICRS) scores were significantly higher in the experimental groups than in the controls (p<0.001). The Wakitani scores in Group D showed a significant improvement compared to those in Group B (p<0.01). The 20 mg/kg HCQ treatment groups showed better recovery than the controls (p<0.01). High-dose HCQ (40 mg/kg) treatment significantly reduced the intensity of collagen type 2 immunoreactivity compared to that in the groups receiving 20 mg/kg of HCQ (p<0.01). Collagen type 2 expression in Group F was significantly lower than that in Group D (p<0.01). There were more TUNEL-positive cells in the repair sites of Groups E and F than in the lower-dose experimental groups and untreated experimental groups (p<0.001). CONCLUSION: A low dose of HCQ improved cartilage repair, while higher doses of HCQ exerted a negative effect on cartilage regeneration in rabbits. In the presence of defective cartilage, the use of HCQ at an appropriate dose and time is important for cartilage health.


Assuntos
Epífises , Hidroxicloroquina , Coelhos , Animais , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Fêmur , Articulação do Joelho
11.
Vet Comp Oncol ; 21(4): 726-738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37724007

RESUMO

Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining. CRISPR/Cas9 live cell imaging screen was done using species specific guide RNA's and transfection of reagents into cells. Response to autophagy core genes was compared to response to an essential (PCNA) and non-essential (FOXO3A) gene. cOSA and hOSA cell lines showed similar antiproliferative and cytotoxic responses to HCQ and Lys05 with median lethal dose (Dm ) values ranging from 4.6-15.8 µM and 2.1-5.1 µM for measures of anti-proliferative response, respectively. A relationship was observed between antiproliferative responses to HCQ and Lys05 and VPS34 CRISPR score with Dm values correlating with VPS34 response (r = 0.968 and 0.887) in a species independent manner. The results show that a subset of cOSA and hOSA cell lines are autophagy-dependent and sensitive to HCQ at pharmacologically-relevant exposures.


Assuntos
Antineoplásicos , Doenças do Cão , Osteossarcoma , Animais , Cães , Humanos , Doenças do Cão/tratamento farmacológico , RNA Guia de Sistemas CRISPR-Cas , Hidroxicloroquina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/veterinária , Autofagia
12.
PLoS One ; 18(8): e0287738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531383

RESUMO

BACKGROUND: In the context of the current COVID-19 pandemic, there is still limited information about how people suffering from autoimmune diseases respond to the different COVID vaccines. The fact that they are taking an immunosuppressant or other drugs that aim to decrease the immune system activities, such as hydroxychloroquine (HCQ), could also impact their ability to respond to a COVID vaccine and vaccines in general. METHODS: Heathy donors were given 200mg of HCQ daily for 6-weeks to assess HCQs impact on the systemic T cells and humoral immune response. Peripheral blood mononuclear cells (PBMC) and plasma were obtained at baseline and 6-weeks after starting daily HCQ. Flow cytometry assays were designed to determine changes in T cell activation and T cell responses. Bead array multiplex were used to analyse antibodies and cytokine levels before and after HCQ intake. RESULTS: As anticipated, HCQ treatment decreased ex vivo T cell activation. We observed a decrease in CD4+CD161- expressing CCR5 (p = 0.015) and CD69 (p = 0.004) as well as in CD8+CCR5+ (p = 0.003), CD8+CD161+CCR5+ (p = 0.002) and CD8+CD161+CD95+ (p = 0.004). Additionally, HCQ decreased the proportion of Th17 expressing CD29 (p = 0.019), a subset associated with persistent inflammation. The proportion of T regulatory cells expressing the inhibitory molecule TIGIT was also reduced by HCQ (p = 0.003). As well, T cells from people on HCQ were less responsive to activation and cytokine production following stimulation with recall antigens and memory T cells were less likely to produce both IFNγ and TNFα following stimulation. CONCLUSION: This study shows HCQ is associated with lower T cell activation and decreased T cell cytokine production. While this study was not performed with the intent of looking at COVID vaccine response, it does provide important information about the changes in immune response that may occur in patient taking HCQ as a treatment for their autoimmune disease.


Assuntos
COVID-19 , Hidroxicloroquina , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Leucócitos Mononucleares , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Vacinas contra COVID-19 , Pandemias , Tratamento Farmacológico da COVID-19 , Citocinas
13.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569432

RESUMO

Neuroblastoma is the most common tumour in children under 1 year old, accounting for 12-15% of childhood cancer deaths. Although current treatments are relatively efficacious against this cancer, associated adverse effects could be detrimental to growth and development. In contrast, glioblastoma accounts for 52% of brain tumours and has an extremely poor prognosis. Current chemotherapeutics include temozolomide, which has numerous negative side-effects and a low-effective rate. Previous studies have shown the manipulation of autophagy to be a promising method for targeting cancers, including glioblastoma. We sought to determine the effects of autophagic alterations in combination with current chemotherapies in both neuroblastoma and glioblastoma. Supplementing cisplatin or temozolomide with autophagy activator rapamycin stabilized cancer cell mitochondria, despite having little effect on apoptosis or oxidative stress. Autophagy inhibition via 3-methyladenine or hydroxychloroquine alongside standard chemotherapies enhanced apoptosis and oxidative stress, with 3-methyladenine also disrupting mitochondrial health. Importantly, combining hydroxychloroquine with 0.5 µM cisplatin or 50 µg/mL temozolomide was as or more effective than 2 µM cisplatin or 100 µg/mL temozolomide alone. Analyzing these interesting results, a combined treatment of autophagy inhibitor with a standard chemotherapeutic agent could help to improve patient prognosis and reduce chemotherapy doses and their associated side-effects.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Neuroblastoma , Criança , Humanos , Lactente , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neuroblastoma/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
14.
Jt Dis Relat Surg ; 34(2): 346-355, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462638

RESUMO

OBJECTIVES: The aim of this study was to investigate whether hydroxychloroquine sulfate (HCQS) induced oxidative stress and how it affected the union of bone fractures in an experimental rat model. MATERIALS AND METHODS: A total of 48 Wistar albino male rats were used. The rats were divided into six groups. To investigate the effects of oral administration of HCQS at varying doses between the third and sixth weeks, fracture healing processes were evaluated using radiography, histopathology, biochemistry, and dual-energy X-ray absorptiometry. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) were measured to analyze the relationship between HCQS and oxidative stress. RESULTS: Radiographic scores, alkaline phosphatase levels, callus/diaphysis ratio, callus development, and bone mineral density were significantly lower in rats given HCQS at three and six weeks compared to the control group (p<0.005). When oxidative stress parameters were compared among the groups, all antioxidant parameters were statistically significant, indicating that antioxidant systems played a role in peripheral blood, when HCQS was used (p<0.005). CONCLUSION: Oral HCQS intake impairs the fracture healing process by causing oxidative stress in rats. However, further biomolecular researches are needed to understand the underlying mechanism of these effects.


Assuntos
Antioxidantes , Hidroxicloroquina , Ratos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ratos Wistar , Hidroxicloroquina/farmacologia , Consolidação da Fratura , Estresse Oxidativo
15.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446111

RESUMO

Hydroxychloroquine (HCQ), an anti-malarial drug, is suggested as a promising candidate for the treatment of pregnancy-related disorders associated with endothelial activation, among which there is preeclampsia (PE). Arterial feto-placental endothelial cells (fpECAs) were isolated from control (CTR) and early-onset preeclamptic (EO-PE) placentas. The aim of this study was to test potential protective effects of HCQ in an in vitro model of endothelial activation as well as in cells isolated from EO-PE placentas. To mimic PE conditions, CTR fpECAs were exposed to a pro-inflammatory environment consisting of tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-1ß (furtherly referred as MIX) with or without varying concentrations of HCQ (1 µg/mL and 10 µg/mL). Their effect on wound healing and endothelial barrier integrity was analyzed. Variations in the expression of IL-8 and leukocyte adhesion molecules (LAM) on both mRNA and protein levels were determined between CTR and PE fpECAs in the presence or absence of HCQ. MIX decreased wound healing and stability of the endothelial barrier, but HCQ did not affect it. Significant differences between CTR and EO-PE fpECAs were observed in IL-8 mRNA, protein secretion, and vascular cell adhesion protein 1 (VCAM-1) mRNA expression levels. After challenging CTR fpECAs with MIX, upregulation of both mRNA and protein levels was observed in all molecules. Combined treatment of HCQ and MIX slightly lowered VCAM-1 total protein amount. In CTR fpECAs, treatment with low concentrations of HCQ alone (1 µg/mL) reduced basal levels of IL-8 and VCAM-1 mRNA and secretion of IL-8, while in EO-PE fpECAs, a higher (10µg/mL) HCQ concentration slightly reduced the gene expression of IL-8. Conclusion: These results provide additional support for the safety of HCQ, as it did not adversely affect endothelial functionality in control fpECAs at the tested concentration. Furthermore, the observed limited effects on IL-8 secretion in EO-PE fpECAs warrant further investigation, highlighting the need for clinical trials to assess the potential therapeutic effects of HCQ in preeclampsia. Conducting clinical trials would offer a more comprehensive understanding of HCQ's efficacy and safety, allowing us to explore its potential benefits and limitations in a real-world clinical setting.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Hidroxicloroquina/farmacologia , Hidroxicloroquina/metabolismo , Pré-Eclâmpsia/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo
16.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150031

RESUMO

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Assuntos
Hidroxicloroquina , Qualidade de Vida , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Citocinas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fosfatidato Fosfatase/genética
17.
Cardiology ; 148(4): 310-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231805

RESUMO

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.


Assuntos
COVID-19 , Hidroxicloroquina , Humanos , Tratamento Farmacológico da COVID-19 , Canal de Potássio ERG1/genética , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Hidroxicloroquina/farmacologia , Canais Iônicos , Simulação de Acoplamento Molecular , Mutação
18.
Gen Physiol Biophys ; 42(3): 297-306, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37098743

RESUMO

This study examined the effect of chloroquine on vasodilation induced by levcromakalim in isolated endothelium-denuded rat aortas and clarified the underlying mechanisms. We examined the effects of chloroquine, hydroxychloroquine, lipid emulsion, reactive oxygen species (ROS) scavenger N-acetyl-ʟ-cysteine (NAC), and KATP channel inhibitor glibenclamide on levcromakaliminduced vasodilation. The effects of chloroquine, hydroxychloroquine, NAC, and levcromakalim on membrane hyperpolarization and ROS production were examined in aortic vascular smooth muscle cells (VSMCs). Chloroquine inhibited levcromakalim-induced vasodilation more than hydroxychloroquine. NAC attenuated chloroquine-mediated inhibition of levcromakalim-induced vasodilation, while lipid emulsion had no effect. Glibenclamide eliminated levcromakalim-induced vasodilation in aortas pretreated with chloroquine. Chloroquine and hydroxychloroquine inhibited levcromakalim-induced membrane hyperpolarization in VSMCs. Chloroquine and hydroxychloroquine both produced ROS, but chloroquine produced more. NAC inhibited chloroquine-induced ROS production in VSMCs. Collectively, these results suggest that, partially through ROS production, chloroquine inhibits levcromakalim-induced vasodilation. In addition, chloroquine-induced KATP channel-induced vasodilation impairment was not restored by lipid emulsion.


Assuntos
Vasodilatação , Vasodilatadores , Ratos , Animais , Cromakalim/farmacologia , Vasodilatadores/farmacologia , Canais KATP , Glibureto/farmacologia , Espécies Reativas de Oxigênio , Hidroxicloroquina/farmacologia , Cloroquina/farmacologia , Emulsões/farmacologia , Canais de Potássio , Aorta , Lipídeos
19.
Graefes Arch Clin Exp Ophthalmol ; 261(10): 2829-2844, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37099129

RESUMO

PURPOSE: Hydroxychloroquine (HCQ) is used in the treatment of several diseases, such as malaria, Sjögren's disease, Covid-19, and rheumatoid arthritis. However, HCQ induces retinal pigment epithelium death via the excessive increase of cytosolic (cROS) and mitochondrial (mROS) free oxygen radical production. The transient receptor potential melastatin 2 (TRPM2) cation channel is stimulated by ADP-ribose (ADPR), cROS, and mROS, although it is inhibited by curcumin (CRC). We aimed to investigate the modulating action of CRC on HCQ-induced TRPM2 stimulation, cROS, mROS, apoptosis, and death in an adult retinal pigment epithelial 19 (ARPE19) cell line model. MATERIAL AND METHODS: ARPE19 cells were divided into four groups: control (CNT), CRC (5 µM for 24 h), HCQ (60 µM for 48 h), and CRC + HCQ groups. RESULTS: The levels of cell death (propidium iodide positive cell numbers), apoptosis markers (caspases -3, -8, and -9), oxidative stress (cROS and mROS), mitochondria membrane depolarization, TRPM2 current density, and intracellular free Ca2+ and Zn2+ fluorescence intensity were upregulated in the HCQ group after stimulation with hydrogen peroxide and ADPR, but their levels were downregulated by treatments with CRC and TRPM2 blockers (ACA and carvacrol). The HCQ-induced decrease in retinal live cell count and cell viability was counteracted by treatment with CRC. CONCLUSION: HCQ-mediated overload Ca2+ influx and retinal oxidative toxicity were induced in an ARPE19 cell line through the stimulation of TRPM2, although they were attenuated by treatment with CRC. Hence, CRC may be a potential therapeutic antioxidant for TRPM2 activation and HCQ treatment-induced retinal oxidative injury and apoptosis.


Assuntos
COVID-19 , Curcumina , Canais de Cátion TRPM , Humanos , Adenosina Difosfato Ribose/metabolismo , Apoptose , Cálcio , Linhagem Celular , Tratamento Farmacológico da COVID-19 , Curcumina/farmacologia , Hidroxicloroquina/farmacologia , Estresse Oxidativo/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Canais de Cátion TRPM/metabolismo
20.
Trends Pharmacol Sci ; 44(5): 290-302, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931971

RESUMO

Autophagy is a cellular homeostasis mechanism that fuels the proliferation and survival of advanced cancers by degrading and recycling organelles and proteins. Preclinical studies have identified that within an established tumor, tumor cell autophagy and host cell autophagy conspire to support tumor growth. A growing body of evidence suggests that autophagy inhibition can augment the efficacy of chemotherapy, targeted therapy, or immunotherapy to enhance tumor shrinkage. First-generation autophagy inhibition trials in cancer using the lysosomal inhibitor hydroxychloroquine (HCQ) have produced mixed results but have guided the way for the development of more potent and specific autophagy inhibitors in clinical trials. In this review, we will discuss the role of autophagy in cancer, newly discovered molecular mechanisms of the autophagy pathway, the effects of autophagy modulation in cancer and host cells, and novel autophagy inhibitors that are entering clinical trials.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA